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We present a theoretical analysis of the properties of an unseeded optical parametic amplifier (OPA) used as
the source of entangled photons for applications in quantum lithography. We first study the dependence of the
excitation rate of a two-photon absorber on the intensity of the light leaving the OPA. We find that the rate
depends linearly on intensity only for output beams so weak that they contain fewer than one photon per mode.
We also study the use of an N-photon absorber for arbitrary N as the recording medium to be used with such
a light source. We find that the contrast of the interference pattern and the sharpness of the fringe maxima
tend to increase with increasing values of N, but that the density of fringes and thus the limiting resolution
does not increase with N. We conclude that the output of an unseeded OPA exciting an N-photon absorber
provides an attractive system in which to perform quantum lithography. © 2007 Optical Society of America
OCIS codes: 110.5220, 270.4180, 270.5290, 270.6570.
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. INTRODUCTION
everal years ago, Boto et al.1 proposed the use of en-
angled states of light to produce interference patterns
ith sub-Rayleigh periods for use in optical lithography.
he successful implementation of this idea could lead to
any useful applications, including the fabrication of

omputer chips with small feature sizes, and more gener-
lly to the development of imaging systems that are not
imited by the Rayleigh criterion. Despite the success of
roof-of-principle experiments2–4 that demonstrate cer-
ain features of the quantum lithography process, to date,
o true demonstration of the quantum lithography proto-
ol has been given. One of the major difficulties in the
aboratory implementation of quantum lithography is the
onflicting requirements that the source of entangled pho-
ons be sufficiently strong to produce multiphoton excita-
0740-3224/07/020270-5/$15.00 © 2
ion of the lithographic process, yet be sufficiently weak
hat the statistics of the source be essentially that of in-
ividual photon pairs. For example, if four photons from
wo independent photon pairs fall simultaneously onto
he recording medium, it would be possible to absorb one
hoton from each of the pairs, and this process would not
ead to the correct sub-Rayleigh fringe pattern as envi-
ioned by Boto et al.

It has been suggested5–7 that a way to overcome this
ifficulty is to replace the optical parametric downcon-
erter envisioned in the proposal of Boto et al. with a
igh-gain optical parametric amplifier (OPA) operating
ith a quantum vacuum input. These papers show by ex-
licit calculation that the output of such a device can be
rbitrarily intense yet possess strong quantum features.
n particular, in the high-gain limit the fringe visibility of
007 Optical Society of America
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he resulting excitation pattern will become reduced, but
ever falls below a visibility of 20%, which is believed to
e large enough for many practical applications.
In the present paper, we continue the analysis of the

se of a high-gain OPA for use in quantum lithography by
ddressing two specific questions related to the optimiza-
ion of the performance of the quantum lithography pro-
ocol. First, we consider the case in which the recording
edium is a two-photon absorber, and we examine how

he rate of excitation depends on the gain of the OPA and
ence on the intensity of the incident light. This question

s of interest because it is known8–12 that two-photon ab-
orption rates can scale linearly with intensity when the
ptical field displays certain nonclassical features. For ex-
mple, for a field composed of biphotons, the two photons
ill tend to arrive simultaneously at a given point on the

ecording material, thus leading to a two-photon absorp-
ion rate that is linear in the intensity. Indeed, it was sug-
ested by Boto et al. that this linear dependence could
ead to increased excitation efficiency, which would sim-
lify the task of implementing quantum lithography in
he laboratory. In the present paper, we derive explicit re-
ations that show when the excitation rate will be linear
nd when it will be quadratic in the light intensity.
We also examine the situation in which the light source

s again the output of an unseeded OPA but in which the
ithographic material operates by N-photon absorption for
rbitrary order N. We find that under certain circum-
tances, the fringe visibility is enhanced through use of a
arge value of N. However, we find that the fringe spacing
nd thus the limiting resolution is unaffected by the order

of the multiphoton absorption.
To put the ensuing theoretical development in a practi-

al context, we next briefly review the original quantum
ithography proposal of Boto et al. As shown in Fig. 1, the

ethod entails generating entangled photon pairs
hrough parametric downconversion in a nonlinear crys-
al, combining these waves at a symmetric beam splitter,
nd interfering these beams at a two-photon absorbing
edium. Quantum interference effects require the two

hotons of the photon pair to emerge either both in the
pper arm �b̂2� or both in the lower arm �â2�, but never
ne photon in each arm.13 The two-photon excitation rate
cales as the square of modulus of the sum of the prob-
bility amplitudes for two-photon absorption for the light
assing through each of the arms, leading to a fringe pat-
ern based on quantum interference of the form 1
cos 2�, where � is the classical (one-photon) phase dif-

erence between the paths. In contrast, the classical inter-
erence pattern has the form 1+cos �.

It should be noted that detection by means of two-
hoton absorption is now routinely used for many optical
easurements.14–16 It should also be noted that recent
ork has demonstrated the feasibility of recording inter-

erence fringes based on multiphoton excitation in litho-
raphic materials.17–19

Fig. 1. Schematic of the quantum lithography architecture.
. CALCULATION OF THE TWO-PHOTON,
UANTUM-LITHOGRAPHIC EXCITATION
ATE
e now develop a more detailed theoretical description of

he quantum lithography process. We consider two light
elds â1 and b̂1 that are generated by the process of OPA.
nder general circumstances, the field operators describ-

ng these light fields can be related to those of the input
ight fields â0 and b̂0 by means of the relations

â1 = Uâ0 + Vb̂0
† , �1�

b̂1 = Ub̂0 + Vâ0
† . �2�

ithin the context of the present paper, we assume that
he input fields are in the vacuum state. The coefficients

and V describe the strength of the nonlinear coupling.
or parametric amplification these coefficients have the

orm

U = cosh G, �3�

V = − i exp�i��sinh G, �4�

here G represents the single-pass gain of the process
nd � is a phase shift describing the interaction. The gain
actor G may be written as G=g �Ep �L where L is the
ength of the interaction region, �Ep� is the pump laser
mplitude, and g is a gain coefficient proportional to the
econd-order susceptibility ��2�.

We assume that these two generated fields are com-
ined at a 50/50 beam splitter. We describe the beam
plitter by means of the standard transfer relations

â2 =
1

�2
�− â1 + ib̂1�, �5�

b̂2 =
1

�2
�iâ1 − b̂1�. �6�

he fields leaving the beam splitter can then be expressed
s

â2 =
− 1

�2
��Uâ0 + Vb̂0

†� − i�Ub̂0 + Vâ0
†��, �7�

b̂2 =
− 1

�2
�− i�Uâ0 + Vb̂0

†� + �Ub̂0 + Vâ0
†��. �8�

he intensity of the light in each of these channels is then
ound to be given by

I = �â2
†â2� = �b̂2

†b̂2� = �V�2 = sinh2 G, �9�

here we have made use of the assumption that the input
elds to the OPA are in their vacuum states.
Through use of Eqs. (7) and (8), we find that the field at

he recording plane can be written as



w
p
p
t
p
k
w
t
v
p
t

w
s
t
t

t
s
m
m
r

W
t
w
t
g

T
r
b
t
t
g
s
s
h
t
t
h
i
v
t
T
i
t
e

3
N
W
t
v
m
r

w
t
s

w

F
l

R

F
f
i
r
t
f

272 J. Opt. Soc. Am. B/Vol. 24, No. 2 /February 2007 Agarwal et al.
â3 =
1

�2
��− ei� + i��Uâ0 + Vb̂0

†� + �iei� − 1��Ub̂0 + Vâ0
†��,

�10�

here � is the classical phase difference between the two
athways. This phase difference varies as a function of
osition over the detection plane. If we restrict our atten-
ion to the two plane-wave modes shown in Fig. 1, this
hase difference can be expressed as �=2kx sin � where
=2� /�, � is the fundamental wavelength associated
ith each mode, � is the common angle of incidence of the

wo beams onto the recording plane, and x is the trans-
erse coordinate in this plane. We next calculate the two-
hoton absorption rate at the image plane. We express
his rate as

R�2� = ��2��â3
†â3

†â3â3�, �11�

here ��2� is a generalized two-photon excitation cross
ection. Again assuming a vacuum-state input to the in-
eraction region, we find that the field-dependent part of
his rate is given by

�â3
†â3

†â3â3� = 4�V�2��U�2 cos2 � + 2�V�2�. �12�

We are now in a position to calculate the scaling law of
he excitation rate of the lithographic pattern. In fact, we
ee from Eq. (12) that the scaling law is different for the
axima and for the minima of this pattern. At the
inima of the pattern, where cos2 �=0, the excitation

ate is given by

Rmin
�2� = 8��2��V�4 = 8��2� sinh4 G = 8��2�I2. �13�

e thus find that at the minima of the fringe pattern, the
wo-photon excitation rate always scales quadratically
ith intensity. However, at the maxima of the fringe pat-

ern, where cos2 �=1, we find that the excitation rate is
iven by

Rmax
�2� = 4��2��V�2��U�2 + 2�V�2�

= 4��2� sinh2 G�cosh2 G + 2 sinh2 G�

= 4��2��I + 3I2�. �14�

hus, we find that at the fringe maxima, the excitation
ate has both a linear and a quadratic contribution. This
ehavior is illustrated in Fig. 2. The crossover point be-
ween the linear and quadratic behavior occurs at an in-
ensity of approximately I=1/3 photons per mode or a
ain coefficient of G=0.55. We thus conclude that for es-
entially all cases of practical interest, the excitation rate
cales quadratically with intensity. It should be noted,
owever, that this conclusion follows only for the case of
he output of an OPA. For other states of light, such as
he pure biphoton state, the linear scaling relation would
old for arbitrarily large intensities. It is also worth not-

ng that for all values of the intensity I, the spatially
arying part of the excitiation pattern oscillates at twice
he spatial frequency of the classical interference pattern.
he only consequence of the use of a large intensity I is to

nduce a uniform background upon which the fringe pat-
ern sits. Thus, increased spatial resolution is obtained
ven for large values of G and I.
. QUANTUM LITHOGRAPHY WITH AN
-PHOTON RECORDING MATERIAL
e now consider the situation in which the recording ma-

erial operates by N-photon absorption for an arbitrary
alue of the order N. As before, the field at the recording
edium is given by Eq. (10). The N-photon absorption

ate can be expressed as

R�N� = ��N��â3
†Nâ3

N�, �15�

here ��N� is a generalized N-photon excitation cross sec-
ion. The field-dependent part of this quantity can be
traightforwardly evaluated and is given by

�â3
†Nâ3

N� = 	
n=0

�N/2�
2N−2n�PN−2n

N �2�V�2�N−n��U�2n cos2n �, �16�

here the quantity Pm
n is given by the recurrence relation

PN
N = �N!, �17�

PN−2n
N = 2��N − 2n + 1�PN−2n+1

N−1

+ ��N − 2n�PN−2n−1
N−1 , where n = 0,1, . . . , �N/2�.

�18�

or example, we find using these formulas that the four
owest-order multiphoton absorption rates are given by

�2� = ��2��â3
†2â3

2� = ��2�4�V�2�2�V�2 + �U�2 cos2 ��, �19�

ig. 2. (Color online) (a) Two-photon excitation rate for the
ringe maxima and minima plotted as functions of the intensity
n each of modes â2 and b̂2. The dashed and dotted curves show
espectively the linear and quadraic contributions to the excita-
ion rate for the fringe maxima. (b) Same as (a), but plotted as
unctions of the OPA gain G.
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�3� = ��3��â3
†3â3

3� = ��3�24�V�4�2�V�2 + 3�U�2 cos2 ��, �20�

�4� = ��4��â3
†4â3

4� = ��4�48�V�4�8�V�4 + 24�V�2�U�2 cos2 �

+ 3�U�4 cos4 ��, �21�

�5� = ��5��â3
†5â3

5� = ��5�480�V�6�8�V�4

+ 40�V�2�U�2 cos2 � + 15�U�4 cos4 ��.

�22�

efining the N-photon fringe visibility as

V�N� =
Rmax

�N� − Rmin
�N�

Rmax
�N� + Rmin

�N�
, �23�

e can readily calculate the dependence of V�N� on the
ain G, as shown in Fig. 3. We see that through the use of
arge values of N, the fringe visibility remains large as
he gain G is increased. However, Figs. 4–6 show that
hile high-order multiphoton absorption can produce
arrower fringes, the fringe spacing remains the same.
e also see that narrowed fringes occur only when the

ain G is less than unity.

ig. 3. Fringe visibility V�N� plotted as a function of the gain G
or various values of the order N of the multiphoton absorption
rocess.

ig. 4. (Color online) Absorption rate R�N� plotted as a function
f the classical phase shift � for a gain of G=0.1.
. SUMMARY AND CONCLUSIONS
n summary, we have developed a theoretical model that
escribes how the output of an unseeded parametric am-
lifier can be used as the source of entangled photons to
e used to perform quantum lithography. We have used
his model first to determine the excitation rate for a
uantum lithographic material that operates by means of
wo-photon absorption. We find that, in general, the tran-
ition rate has two contributions, one of which is linear
nd the other of which is quadratic in the light intensity.
e also find that the linear term dominates only for very
eak beams of light that contain on average far fewer

han one photon per mode. Since beams this weak are un-
ikely to prove useful in the context of quantum lithogra-
hy, we conclude that under all practical situations the
uadratic term is expected to dominate. At one time, it
ad been hypothesized that it would be desirable to per-
orm quantum lithography under conditions of linear
esponse.1 This hypothesis was based on the argument
hat a linear response would increase with excitation
trength more rapidly than a quadratic response under
onditions of low excitation. The present analysis shows
hat one can easily work under conditions such that the
uadratic, more-rapidly-growing term dominates. We

ig. 5. (Color online) Absorption rate R�N� plotted as a function
f the classical phase shift � for a gain of G=0.5.

ig. 6. (Color online) Absorption rate R�N� plotted as a function
f the classical phase shift � for a gain of G=1.0.
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ave also examined the use of such a light source in the
ontext of a lithograpic recording medium that operates
y means of N-photon absorption for arbitrary N. We find
hat the use of a large value of N allows for the fringe vis-
bility to remain large even for moderately large values of
he OPA gain G. However, the use of large N does not lead
o an increase of the fringe density and hence of the spa-
ial resolution of the lithographic process. The use of a
arge nonlinear order N does lead to narrower fringes, but
nly for values of the gain G that are less than unity. Of
he arguments presented in this paper, we conclude that
n unseeded OPA exciting an N-photon absorber provides
n attractive system with which to perform quantum li-
hography.
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